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Abstract

Pong is a classic and popular arcade game in which players control
vertical paddles to deflect a ball back and forth across the screen. The
objective is to defeat the other player so that they are unable to hit the ball
back. Inspired by the Atari game environment with its strategic depth
and simplicity due to its discrete action space, we developed a custom
Pong-like environment designed to facilitate curriculum-based reinforce-
ment learning. In this work, we propose a training framework that com-
bines Curriculum Learning with Proximal Policy Optimization (PPO) to
teach an agent to play Pong efficiently and effectively. Instead of learning
the full game dynamics all at once, the agent progresses through a series of
five increasingly difficult stages—beginning with basic ball-tracking and
ending in high-speed ball movements with precise agent gameplay. PPO’s
clipped objective ensures stable policy updates across stages. We eval-
uate agent performance using cumulative, per-episode, and normalized
reward metrics, and find that our curriculum approach significantly im-
proves learning rate compared to non-curriculum PPO baselines. These
results demonstrate the advantages of structured task decomposition and
a customized environment design in training agents for complex behaviors
in sparse-reward settings.

1 Introduction

Training an agent to play an online video game has been a significant focus
within the fields of artificial intelligence and reinforcement learning (RL). Clas-
sic games like Pong are often used as benchmarks because of their simplicity,
discrete action space, and focus on timing and control. In this project, we design
our own Pong-inspired environment using the custom gym template [2] rather
than using the standard Atari version. Our environment removes the second
paddle (opponent), giving the agent a more controlled learning experience, and
includes custom reward functions to make feedback less sparse and more in-
formative. This setup gives us more flexibility in shaping the agent’s learning
process and allows for easier debugging and performance evaluation.

Even though Pong is simple in concept, training an agent to play it well can
still be difficult due to delayed rewards and the need for precise movement.
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To address this, we use a combination of Curriculum Learning and Proximal
Policy Optimization (PPO). By breaking down the full task into smaller sub-
tasks, updating the policy more frequently, and increasing difficulty gradually,
we give the agent a smoother learning curve. PPO helps by making stable and
frequent updates to the policy throughout training. Together, these methods
help improve learning efficiency and overall agent performance in our custom
Pong environment.

2 Background and Related Work

2.1 Technical Background

Curriculum Learning is a training strategy in reinforcement learning where an
agent is progressively introduced to more difficult tasks instead of learning the
whole task at once. Inspired by the way humans learn by mastering simpler
tasks before tackling complex challenges, Curriculum Learning helps improve
sample efficiency and stability in RL training. The design of a curriculum in-
volves two main components: a Difficulty Measurer and a Training Scheduler.
The Difficulty Measurer defines task complexity based on predefined rules such
as task complexity or environmental parameters. The Training Scheduler de-
termines the sequence and pacing at which the model progresses through tasks,
which can predefined manually or adaptively adjusted based on performance
[10]. A crucial aspect of Curriculum Learning is designing source tasks, which
serve as stepping stones toward mastering the final objective. Some examples
of possible methods for defining source tasks are mistake-driven subtasks, task-
based subgoals, and task dimension simplification [7]. In particular, Continuous
Curriculum Learning extends this idea by adjusting the difficulty of tasks in a
smooth and ongoing fashion rather than in discrete stages, allowing the agent
to transition more fluidly between skill levels [1]. By carefully designing source
tasks, Curriculum Learning ensures that reinforcement learning agents acquire
skills in a structured manner, leading to improved generalization and better
performance in complex tasks.

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that
belongs to the family of policy gradient methods [9]. Unlike value-based meth-
ods such as Deep Q-Networks, PPO directly optimizes the policy by adjusting
the probability distribution of actions taken by the agent. This approach is
particularly effective for complex environments where traditional value-based
methods struggle. One of PPO’s key innovations is its clipped surrogate objec-
tive function, stabilizing training by preventing excessively large policy updates
[9]. In standard policy gradient methods, large updates can cause instability
and suboptimal performance. PPO mitigates this issue by limiting how much
the policy can change each update, which ensures controlled learning. When
combined with Curriculum Learning, PPO can progressively refine the agent’s
strategy, leading to more efficient training and improved performance. PPO has

2



been successfully applied to a wide range of tasks, including Atari game environ-
ments, where it consistently demonstrates strong performance[4]. Its ability to
handle high-dimensional observation spaces and continuous action spaces makes
it a popular choice in many modern reinforcement learning benchmarks.

2.2 Related Work

Previous research has explored training agents to play Atari Pong; however,
these approaches have primarily focused on Deep Reinforcement Learning [5]
and Hierarchical Reinforcement Learning [3] rather than Curriculum Learning
or Proximal Policy Optimization. While Deep RL has been widely used to
train agents for Atari games, Hierarchical RL has introduced structured learn-
ing through sub-task decomposition. Understanding these existing approaches
provides a foundation for exploring alternative reinforcement learning strategies.

Deep Reinforcement Learning:
Deep RL has gained traction as a methodology for solving complex reinforce-
ment learning problems, particularly with advancements in neural networks and
computer vision. Prior applications of Deep RL to Atari games have involved
the use of deep convolutional neural networks combined with updates from the
Deep Q-learning algorithm [5]. This algorithm leverages stochastic gradient
descent to approximate the action-value function, allowing Deep Q-Networks
(DQNs) to process high-dimensional visual input and learn effective feature
representations. These DQNs were tested on a wide variety of Atari games,
including Pong, and they were able to achieve and sometimes even exceed the
human-level performance in many of the games [6]. Overall, this approach has
proven successful in optimizing policies for agents playing various Atari games.

Hierarchical Reinforcement Learning:
The core idea of Hierarchical RL is that a complex task can be decomposed into
smaller, more manageable sub-tasks, which are then learned and combined into
an overall policy. By incorporating human-like instructional materials—such
as game manuals or direct human guidance— Hierarchical RL has been shown
to accelerate the agent’s learning process [3]. This method enables agents to
develop sub-policies for each sub-task, ultimately leading to improved agent
performance. Interestingly, integrating human-like instructions into Hierarchi-
cal RL has been integral in enhancing learning efficiency for Atari games like
Tennis and Pong, outperforming Deep RL in these contexts [3].

While Hierarchical RL shares similarities with Curriculum Learning—both break
down a challenging task into smaller components— their fundamental approaches
differ. Hierarchical RL employs multiple levels of abstraction where task struc-
tures and state representations may vary across different hierarchical layers. In
contrast, Curriculum Learning is specifically applied during training and focuses
on optimizing the sequence in which tasks are presented [10]. Understanding
these distinctions is crucial for evaluating the potential benefits of Curriculum
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Learning in reinforcement learning for our custom Pong environment.

3 Technical Approach

3.1 Proximal Policy Optimization

The key principle behind PPO is to prevent excessively large updates that could
destabilize the policy. To achieve this, PPO optimizes the following objective
function:

L(s, a, θk, θ) = min(
πθ(a|s)
πθk(a|s)

Aπθk (s|a), clip( πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ)Aπθk (s|a)),

where πθ(a|s)
πθk

(a|s) is the probability ratio between the new and old policy. Aπθk is

the advantage estimate, which measures how much better an action is compared
to the expected value. And ϵ is a clipping hyperparameter that controls how
far the new policy can deviate from the old one [8]. The clipping mechanism
ensures that if the policy update leads to a probability ratio that is too large, it
gets clipped to avoid instability. This prevents the policy from moving too far
away from the previous versions while still making necessary improvements.
The policy updates as follows:

θk+1 = argmax
θ

Es,a∼πθk
[L(s, a, θk, θ)] ,

where the optimization is performed by taking multiple steps of minibatch SGD
to maximize the objective [8].
The algorithm for PPO is as follows:

Figure 1: Psuedocode for PPO algorithm using stochastic gradient ascent [8]
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3.2 Curriculum Learning Breakdown

To make learning more efficient, we gradually increase the difficulty of the en-
vironment in five stages. Note: The dimensions of the screen range from 0-1,
with the origin (0,0) being the bottom left corner of the screen.

Stage 1
Goal: Can the agent track and follow the ball?

• Ball moves only in the vertical direction

• Slow ball speed (vy = 0.2)

• Large paddle size (0.5)

Stage 2
Goal: Can the agent hit the ball back?

• Ball moves in both x and y directions

• Slow ball speed (vx = vy = 0.2)

• Large paddle size (0.5)

Stage 3
Goal: Can the agent react faster to the ball?

• Experiment with faster ball speeds (when the ball is reset, vx and vy will
be randomly set to either -0.2, -0.1, 0.1, or 0.2).

Stage 4
Goal: Can the agent perform well when the ball is in different positions?

• Vary the ball’s initial position (when the ball is reset, ballx and bally will
be randomly set anywhere in the range from 0.1-0.9 in 0.1 increments).

Stage 5
Goal: Can the agent make more precise movements?

• Experiment with smaller paddle sizes (every 100 episodes, the paddle size
will decrease by 0.05 starting at an initial size of 0.5 and ending at 0.3).

4 Experimental Results

To evaluate the performance of our PPO agent trained with Curriculum Learn-
ing in the Pong environment, we visualized key metrics across three different
plots for each stage of training. These plots were designed to capture different
aspects of the agent’s learning and progression over time. First, we plotted
the cumulative reward vs. total timesteps, which provides an overall measure
of the agent’s learning progress by summing rewards across the entire training
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process. Second, we plotted the total reward per episode, which highlights fluc-
tuations in performance at the episode level. Lastly, we plotted the normalized
reward per episode, which reflects the average reward per timestep within each
episode—offering insight into the agent’s efficiency while also accounting for
varying episode lengths. In addition to training with Curriculum Learning, we
also trained the agent using PPO alone without any staged curriculum, serv-
ing as a baseline for comparison. By analyzing the same three plots for both
the curriculum-based and baseline agents, we were able to directly assess the
impact of Curriculum Learning on the agent’s ability to learn more efficiently,
generalize more effectively, and maintain high performance across increasingly
complex stages.

4.1 Curriculum Learning Performance by Stage

Stage 1: Learning Basic Ball Tracking
The objective of Stage 1 was to assess whether the agent could learn to track
and follow the ball under simplified dynamics. The training curves shown in

Figure 2: Stage 1 Training Performance

Figure 2 reflect successful learning in Stage 1. In the cumulative reward vs.
timestep plot, we observe that initially the reward starts slightly negative but
then steadily increases. This suggests that the agent initially struggled, but
then quickly acquired the ability to follow the ball as it moved. Additionally,
the second plot shows similar growth over time, followed by stabilization at a
reward of approximately 1.3 per episode. This is also evident in the normalized
reward plot, where the agent’s performance improved over time until it even-
tually stabilized at around 0.4 per timestep. These plots demonstrate rapid
convergence, indicating that the agent was able to master this simple task rel-
atively quickly. Overall, the results from Stage 1 showed that the simplified
environment was effective in teaching the agent basic ball-tracking behavior,
setting the foundation for the later, more complex stages.

Stage 2: Learning to Hit the Ball Back
In Stage 2, we increased the environmental complexity to evaluate whether the
agent could learn to return the ball successfully when it moves in two dimen-
sions. These training curves in Figure 3 reveal a clear struggle, followed by
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Figure 3: Stage 2 Training Performance

a breakthrough in learning. In the cumulative reward over timesteps plot, we
observe a sharp decline into negative cumulative reward, indicating that the
agent consistently missed the ball for a significant portion of the training. This
continued until around 70,000 timesteps, at which the agent began to recover
and accumulate positive reward, displaying a turning point in its learning de-
velopment. The total reward per episode plot mirrors this learning curve as we
can see that for most of the training, the agent’s episode rewards hover near
zero, but in the final stretch of training episodes, we observe a rapid improve-
ment. This is a strong sign that the agent has finally learned to track the ball
and return it effectively. Similarly, in the normalized reward per episode plot,
the agent’s efficiency remains poor for most of the run but improves at the
end, indicating growing reward per timestep. Additionally, in comparison to
Stage 1, during Stage 2, the agent went through far fewer episodes, meaning
that episode lengths began to increase. This also shows learning because the
agent wasn’t dying as often and was learning how to better play the game. This
stage demonstrates that introducing horizontal ball movement posed a major
challenge; however, the agent eventually developed the skill of hitting the ball
back.

Stage 3: Reacting to Faster Ball Speeds

Figure 4: Stage 3 Training Performance
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In Stage 3, we experimented with the ball speed, forcing the agent to react
more quickly. The plots in Figure 4 indicate a general improvement in learning,
although the trends present are more subtle than those in the first two stages.
The cumulative reward over timesteps plot demonstrates an almost linear in-
crease, suggesting that the agent was relatively consistent in its performance of
hitting the ball back at higher ball speeds. In terms of total reward per episode,
the agent started earning a reward of about 2.5 and ended up receiving a reward
close to 5 (doubling its reward) by the final episode. While not as stable as the
last stage, the agent’s maximum reward increased. In addition, there were peri-
ods of a few episodes where the agent outperformed itself (as shown by the peaks
in the graph at episodes 700, 1000, and 1250) and earned a much higher reward
(at about 21, 14, and 7.5, respectively) than in the average episode. It’s also
important to notice that 2000 episodes ran in this stage in comparison to over
10,000 in Stage 2, emphasizing that the agent is playing longer games and inter-
acting with the ball more in each successive stage. Finally, while the normalized
reward over timesteps per episode plot shows a decent bit of noise, we can ob-
serve a general upward trend, indicating that the agent is learning throughout
this stage and is getting more reward at each timestep as the episodes proceed
and the ball speed varies.

Stage 4: Generalizing to Random Ball Positions

Figure 5: Stage 4 Training Performance

In Stage 4, we tested the agent’s ability to generalize to varied initial ball posi-
tions. This stage was crucial for evaluating the agent’s flexibility and ability to
adapt to new situations. The training curves in Figure 5 indicate that the agent
adapted well to this new challenge. The cumulative reward over timesteps plot
shows a near-linear upward trajectory, indicating stable learning despite the
newly added challenge. This indicates that the agent was able to effectively
transfer its learning from previous stages to adapt to this new environment.
In the total reward per episode plot, we observe a generally increasing trend
with some variance across episodes. This variance is expected due to the ran-
domized nature of the environment, which introduces inconsistency in difficulty
from episode to episode. However, the overall rise in episode rewards indicates
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that the agent’s policy is effective across various initial conditions. The normal-
ized reward per episode plot also displays a gradual upward trend, suggesting
that the agent is becoming more efficient in accumulating reward relative to the
number of timesteps. We also note that the number of episodes in this stage
has been reduced to 1000, which is half the number we had in Stage 3. This
emphasizes that the agent is surviving longer in each episode, suggesting im-
proved gameplay as it successfully adapted to the challenge of randomized ball
positions. Overall, Stage 4 demonstrates that the agent is learning to generalize
its behavior and maintain consistent performance regardless of where the ball
starts.

Stage 5: Making Precise Movements

Figure 6: Stage 5 Training Performance

Stage 5 was the final stage in our Curriculum Learning plan, and was used
to test the agent’s ability to make precise movements. The cumulative reward
vs timesteps plot shows a steady, nearly linear increase throughout the stage,
suggesting the agent was able to consistently accumulate reward even as paddle
size decreased. This suggests that the agent’s policy was robust enough to with-
stand incremental reductions in the paddle size. The total reward per episode
plot reveals more nuanced behavior. While there is significant fluctuation in
episode rewards, the agent is generally able to recover and maintain perfor-
mance. While performance fluctuates, there is no collapse in reward, indicating
that the agent maintains a stable level of ability even as the environment be-
comes more precise. Despite the variance, the normalized reward per episode
plot demonstrates relative stability and even slight improvement over time. This
indicates that the agent maintained efficiency in reward collection per timestep,
despite the increasing precision needed with smaller paddle sizes. Additionally,
the total number of episodes decreased slightly from the previous stage. This
indicates that even with the increased precision demands, the agent was able to
maintain long gameplay, reflecting improved control.
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4.2 Baseline PPO Performance and Comparison

Figure 7: Agent Training Performance under PPO

Figure 7 shows an agent operating solely under the PPO algorithm but without
Curriculum Learning during its training process. Essentially, this agent is per-
forming in the same environment that the CL agent performed in during Stage
5. This agent performed over 600,000 timesteps, matching the CL agent’s total
timesteps over five stages.

In terms of cumulative reward vs. timesteps, the agent initially received nega-
tive reward for the first 70,000 timesteps or so, meaning that the agent found
it difficult to adjust to the Pong game environment and hit the ball back. Soon
after, however, the agent picked up the game and demonstrated a relatively
steady increase in cumulative reward (with the exception of two plateaus at
about 235,000 and 350,000 timesteps). At the end of the 600,000 timesteps,
the agent accumulated over 17,500 in reward, while the CL agent at the end of
Stage 5 accumulated over 12,000 in reward after 150,000 timesteps.

For total reward per episode, the agent demonstrated growth over its 6000
episodes, with a maximum of 6 by the last episode. Although this total reward
is not particularly high, especially in comparison to the average of between 15-20
during Stage 5, we can observe the agent learning a lot during training. Lastly,
we have the plot showing the normalized reward over episodes, which accounts
for episodes that have varying lengths. On average, the agent initially received
a reward of -0.18, which increased to about -0.07 on the final episode. Although
improvement is clear, the agent maintained a negative normalized reward across
all training episodes, indicating that its performance is still suboptimal.

All three plots in Figure 7 have significantly lower results than the plots in
Figure 6 (the Curriculum Learning agent during the fifth stage) even though
both agents are given the same amount of time to train. These results highlight
the key advantage of Curriculum Learning: by progressively increasing the dif-
ficulty of the environment and allowing the agent to master simpler subtasks
first, Curriculum Learning enables faster adaptation and stronger performance
in complex reinforcement learning tasks.
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5 Conclusion and Future Work

In this project, we successfully demonstrated the effectiveness of combining
Curriculum with Proximal Policy Optimization (PPO) to train a reinforcement
learning agent in a custom Pong-like environment. By incrementally increasing
task difficulty through a five-stage Curriculum Learning, we enabled the agent
to first master fundamental skills such as tracking the ball before progressing to
more advanced challenges such as making more precise movements. Our staged
training approach led to more stable and efficient learning compared to a non-
curriculum PPO baseline, as shown by superior performance across cumulative,
episodic, and normalized reward metrics. These results highlight how structured
task decomposition and environment customization can significantly accelerate
learning and improve agent performance, especially in sparse-reward settings.

Despite the promising results, there are several limitations to our current frame-
work. While the curriculum effectively guides the agent toward higher perfor-
mance, it is manually designed and not dynamically adjusted based on the
agent’s performance, which could lead to inefficiencies or plateauing in more
complex environments. Additionally, our experiments were conducted in a sim-
plified Pong setting with a single agent and no adversarial opponent, which may
limit generalization to more competitive or multi-agent scenarios. For future
work, we could explore automated Curriculum Learning generation that adapts
the difficulty of the stages based on real-time agent performance. Moreover,
we could extend this approach to more complex environments with different
dynamics and multi-agent interactions. These directions could provide deeper
insights into scalable training strategies for real-world reinforcement learning
problems.
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